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A study was made concerning the effect of four kinds of small-volume packing on the expan-
sion of a fluidization bed, on its effective thermal diffusivity, and on the heat transfer between
the bed and an immersed surface. The test results for two materials have been generalized in
terms of empirical formulas.

The fluidization technique has found many uses in chemical engineering for catalysis, adsorption,
and other processes which involve some interaction between a gas and a disperse solid material. It is
suitable for small grain sizes, for narrow temperature ranges, and for fast heat removal from the reac-
tion zone. At high gas filtration velocities, however, the system becomes inhomogeneous and gas cavities
or bubbles appear with contact between phases. These effects become magnified as the apparatus is scaled

up.

The inhomogeneity of a fluidization bed is due to the instability of the disperse phase suspended in
the gravitational field by the gas stream. If stationary surfaces are spaced uniformly inside such a sys-
tem, their local interaction with the gas stream will produce a more stable bed structure where the gas
cavities and the inhomogeneity centers will collapse. A judicious design of these surfaces, their location,
and geometry, can make it possible to control the hydrodynamics and the structure of a fluidization system
and to optimize it for each specific technological application. This is the reason for the recently growing
interest in packed beds [1-15], but information about them in the technical literature is very scattered.

We will present here the results of experimental studies concerning the hydrodynamics and the heat
transfer in a fluidization bed with small-volume packing. Tests were performed with four different kinds
of packing, the characteristics of which are given in Table 1. The disperse phase in these tests was quartz
sand or silica gel with the average paticle size 0.23 and 0.19 mm, respectively. The height of the loose
charge was about 30 cm. Most tests were performed with a column 30 cm in diameter (packing type 2, 3,
and 4). Part of the tests was performed with a column 15 cm in diameter (packing type 4 and 5).

TABLE 1. Packing Characteristics In the first test series the aim was to establish the
Diam- . effect of packing on the bed porosity. The latter was deter-
) Num- eterk of Eqm‘_’alem mined from the static gas pressure {ransmitted through a
Packingtype | |PRP" 08 | packing segment of a given height. The measurements were made
Dy, (cmy| $12¢ over a range of initial charge heights within which the
. porosity remained almost uniform throughout [16, 17]. The
Bl::gle of vertical| 5 8,1 test results with silica gel are shown in Fig. 1. The rela-
e 3 55 | 3.0 tive porosity has been plotted here along the ordinates, with
Bunch of wire 4 2 0,52 the porosity at the start of fluidization ¢, as the scale unit.
spirals 5 ! 0,34 This porosity was measured along the height of the bed after
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Fig. 1. Relative porosity of a fluidization bed as a function of the fluidi-
zation number, for silica gel as the disperse phase: 1) free bed; 2, 3,
4, 5) packed bed with the respective packing type.

Fig. 2. Correlation curve for the effective thermal diffusivity of the fluid-

ization system, with sand as the disperse phase: 1) free bed; 2, 3, 4, 5)

packing types according to Table 1; with silica gel as the disperse phase:
6) free bed; 7, 8, 9, 10) packing typesaccordingto Tablel. A = aeff/uoHo

- exp (0.46/lp).

B i stabilization by a gradual decrease of the gas velocity. The curves
i T Gd represent averages of the test series, with the deviation of actual
03 = - 2 :_—_1; values not exceeding 10%. The graph indicates clearly that packing
_ >—3 -6 types 3, 4, and 5 [18] change the bed porosity appreciably, the lat-
QZQM 901 90z g3 04 g05 94 " ter increasing almost proportionally to the gas velocity. Packing

. . type 2 has only a small effect on the bed; the system expands here
Fig. 3. Corre!atlon curve for. the only slightly at higher values of the fluidization number. Curves 2
heat transfer in the fluidization and 1 tend to converge within the range of high filtration velocities.

system, with sand as the disperse

A similar pattern is noted also in the tests with sand.
phase: 1, 2, 3) packing types 3, 4,

5 according to Table 1; with silica The porosity of a fluidization bed characterizes, to some
gel as the disperse phase: 4, 5, 6) measure, the homogeneity of the system. The higher the porosity
packing types 3, 4, 5 according to is, i.e., the more the bed expands, the higher is its gas content.
Table 1. B= l1-a/ag+ (pg/pg) It is also well known that the buoying velocity of a bubble and thus
-1074, its dwell time in the bed are proportional to the square root of its

_ diameter [19, 20]. The higher the bed porosity is, therefore, the
slower do bubbles of excess gas move through it and the smaller is their size, and the more homogeneous
is the bed structure.

In the second test series we studied the effect of packings on the stirring rate of the solid phase in
the system. The circulation of the solid phase was measured by the method of the instantaneous heat
source [21, 22, 23], such a heat source being produced here by some hot particles at the upper bed sur-
face.

The effective thermal diffusivity of a fluidization system is determined by the gas filtration velocity
(u), the charge height (H,), and the aerodynamic characteristics of the material (uy). These three quan-
tities can be combined into the dimensionless group aeff/ugH, and the dimensionless ratio u/uy = N. It will
be expedient to generalize the test data into a function of these two dimensionless variables. A preliminary
evaluation of the test data has shown that the values for a free bed in this system of coordinates are higher
than the values for a packed bed. This indicates that the stirring rate of the solid phase in a bed with pack-
ing is lower than in a free bed. In this system of coordinates, furthermore, the test points for all kinds of
packing studied here fit on straight lines passing through the origin of coordinates. The slopes of these
lines depend on the equivalent packing size (lp), which is defined as the bed volume per unit area of charge
surface. The slopes of the test curves decrease with increasing lp.
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The final evaluation of the test data is shown in Fig. 2, where values for the two materials and for
the four kinds of packing have been plotted along with test values for a free bed. All points fit closely on a
straight line and can be generalized by the equation
0.46

CGeff . o 1
ut, _0.066((N 2) exp( I ) 1)

for the following range of variables: 2< N =20, 0.33< p<10cm, 2=uy =6 m/sec. The scatter of fest
data does not exceed 20%. The derived relation indicates that the stirring rate of the solid phase increases
proportionally to the fluidization number.

In the third test series the aim was to obtain information about the effect of packings on the rate of
heat transfer between the fluidization bed and an immersed surface. The tests were performed on an appa-
ratus shown earlier with type 3, 4, and 5 packing in two materials (sand, silica gel).

The heat transfer was measured by the stationary method with a probe-heater. The probe was
placed vertically at the center of the column, with its bottom edge 100 -mm above the gas distributor mesh.
The probe was made of copper tubing 20 mm in diameter, 100 mm long, and 5 mm wall thickness. Inside
the probe was placed a heater of nichrome wire, fastened on a ceramic tube 4 mm in diameter. In order
to minimize heat leakage through the end surfaces of the probe, the latter were covered with 20 mm thick
Textolite stoppers. The temperature difference At was measured with a Chromel—Alumel differential
thermocouple using 0.15 mm wire. One thermocouple bead was fastened to the outside surface of a copper
cylinder in the center inside the probe. The other bead of the differential thermocouple read the tempera-
ture of the fluidization bed. During the tests we measured the heater power as well as the temperature
difference between probe surface and bed. The heat transfer coefficient was measured in these tests within
a 3% error. With increasing gas filtration velocity in a free bed as well as in a packed bed, the heat trans-
fer coefficient passed through a soft maximum. Maximum heat transfer in a packed bed was attained at
higher velocities than in a free bed [1]. Moreover, the maximum value of the heat transfer coefficient dif-
fered from one kind of packing to another. The maximum value of the heat transfer coefficient decreased
with decreasing length 7. :

In order to establish the relative effect of packings on the rate of heat transfer between a fluidization
bed and an immersed surface, it is worthwhile to look for a functional relation between dimensionless
ratios in the form:

l——“—=f(~d—;ﬂ). )
% b e

In Fig. 3 are shown test data for three kinds of packing in the two different materials. The test data
can be accurately enough approximated by the relation

1= % 053 (_Zd_)“ — 0~ Pd )

=2 p Pe
This relation applies within the range 0.06 < d/lp < 0.8, 2.2-10%> pd/pg > 0.9- 10°. The maximum scatter
of test points is 8%. According to relation (3), each packing reduces somewhat the rate of heat transfer
between bed and immersed surface. Under our test conditions this reduction did not exceed 30%.

Thus, small-volume type 3, 4, and 5 packings homogenize the bed, increase its expansion, and slow
down the solid phase stirring. At the same time, there results a decrease in the rate of heat transfer be-
tween bed and immersed surface.

NOTATION
apff is the effective thermal diffusivity;
Ug, U are the starting fluidization velocity and gas filtration velocity, referred to the total bed cross
) section;
€, & are the starting and running porosity of the fluidization bed;
H, is the height of the settled bed;

pG, pg  are the density of the fluidizing agent (gas) and of the disperse phase, respectively;
N is the fluidization number:;

d is the diameter of the solid particles;

g is the acceleration due to gravity;
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is the equivalent length of the packing;
are the heat transfer coefficient for a packed and for a free bed, respectively.
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